3.2077 \(\int \frac {(a+\frac {b}{x^4})^{5/2}}{x^3} \, dx\)

Optimal. Leaf size=92 \[ -\frac {5 a^3 \tanh ^{-1}\left (\frac {\sqrt {b}}{x^2 \sqrt {a+\frac {b}{x^4}}}\right )}{32 \sqrt {b}}-\frac {5 a^2 \sqrt {a+\frac {b}{x^4}}}{32 x^2}-\frac {5 a \left (a+\frac {b}{x^4}\right )^{3/2}}{48 x^2}-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2} \]

[Out]

-5/48*a*(a+b/x^4)^(3/2)/x^2-1/12*(a+b/x^4)^(5/2)/x^2-5/32*a^3*arctanh(b^(1/2)/x^2/(a+b/x^4)^(1/2))/b^(1/2)-5/3
2*a^2*(a+b/x^4)^(1/2)/x^2

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {335, 275, 195, 217, 206} \[ -\frac {5 a^2 \sqrt {a+\frac {b}{x^4}}}{32 x^2}-\frac {5 a^3 \tanh ^{-1}\left (\frac {\sqrt {b}}{x^2 \sqrt {a+\frac {b}{x^4}}}\right )}{32 \sqrt {b}}-\frac {5 a \left (a+\frac {b}{x^4}\right )^{3/2}}{48 x^2}-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b/x^4)^(5/2)/x^3,x]

[Out]

(-5*a^2*Sqrt[a + b/x^4])/(32*x^2) - (5*a*(a + b/x^4)^(3/2))/(48*x^2) - (a + b/x^4)^(5/2)/(12*x^2) - (5*a^3*Arc
Tanh[Sqrt[b]/(Sqrt[a + b/x^4]*x^2)])/(32*Sqrt[b])

Rule 195

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(x*(a + b*x^n)^p)/(n*p + 1), x] + Dist[(a*n*p)/(n*p + 1),
 Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || (EqQ[n, 2
] && IntegerQ[4*p]) || (EqQ[n, 2] && IntegerQ[3*p]) || LtQ[Denominator[p + 1/n], Denominator[p]])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 275

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 335

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]

Rubi steps

\begin {align*} \int \frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{x^3} \, dx &=-\operatorname {Subst}\left (\int x \left (a+b x^4\right )^{5/2} \, dx,x,\frac {1}{x}\right )\\ &=-\left (\frac {1}{2} \operatorname {Subst}\left (\int \left (a+b x^2\right )^{5/2} \, dx,x,\frac {1}{x^2}\right )\right )\\ &=-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2}-\frac {1}{12} (5 a) \operatorname {Subst}\left (\int \left (a+b x^2\right )^{3/2} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {5 a \left (a+\frac {b}{x^4}\right )^{3/2}}{48 x^2}-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2}-\frac {1}{16} \left (5 a^2\right ) \operatorname {Subst}\left (\int \sqrt {a+b x^2} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {5 a^2 \sqrt {a+\frac {b}{x^4}}}{32 x^2}-\frac {5 a \left (a+\frac {b}{x^4}\right )^{3/2}}{48 x^2}-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2}-\frac {1}{32} \left (5 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\frac {1}{x^2}\right )\\ &=-\frac {5 a^2 \sqrt {a+\frac {b}{x^4}}}{32 x^2}-\frac {5 a \left (a+\frac {b}{x^4}\right )^{3/2}}{48 x^2}-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2}-\frac {1}{32} \left (5 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {1}{\sqrt {a+\frac {b}{x^4}} x^2}\right )\\ &=-\frac {5 a^2 \sqrt {a+\frac {b}{x^4}}}{32 x^2}-\frac {5 a \left (a+\frac {b}{x^4}\right )^{3/2}}{48 x^2}-\frac {\left (a+\frac {b}{x^4}\right )^{5/2}}{12 x^2}-\frac {5 a^3 \tanh ^{-1}\left (\frac {\sqrt {b}}{\sqrt {a+\frac {b}{x^4}} x^2}\right )}{32 \sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.05, size = 96, normalized size = 1.04 \[ -\frac {\sqrt {a+\frac {b}{x^4}} \left (15 a^3 x^{12} \sqrt {\frac {a x^4}{b}+1} \tanh ^{-1}\left (\sqrt {\frac {a x^4}{b}+1}\right )+33 a^3 x^{12}+59 a^2 b x^8+34 a b^2 x^4+8 b^3\right )}{96 x^{10} \left (a x^4+b\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b/x^4)^(5/2)/x^3,x]

[Out]

-1/96*(Sqrt[a + b/x^4]*(8*b^3 + 34*a*b^2*x^4 + 59*a^2*b*x^8 + 33*a^3*x^12 + 15*a^3*x^12*Sqrt[1 + (a*x^4)/b]*Ar
cTanh[Sqrt[1 + (a*x^4)/b]]))/(x^10*(b + a*x^4))

________________________________________________________________________________________

fricas [A]  time = 1.38, size = 182, normalized size = 1.98 \[ \left [\frac {15 \, a^{3} \sqrt {b} x^{10} \log \left (\frac {a x^{4} - 2 \, \sqrt {b} x^{2} \sqrt {\frac {a x^{4} + b}{x^{4}}} + 2 \, b}{x^{4}}\right ) - 2 \, {\left (33 \, a^{2} b x^{8} + 26 \, a b^{2} x^{4} + 8 \, b^{3}\right )} \sqrt {\frac {a x^{4} + b}{x^{4}}}}{192 \, b x^{10}}, \frac {15 \, a^{3} \sqrt {-b} x^{10} \arctan \left (\frac {\sqrt {-b} x^{2} \sqrt {\frac {a x^{4} + b}{x^{4}}}}{b}\right ) - {\left (33 \, a^{2} b x^{8} + 26 \, a b^{2} x^{4} + 8 \, b^{3}\right )} \sqrt {\frac {a x^{4} + b}{x^{4}}}}{96 \, b x^{10}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^4)^(5/2)/x^3,x, algorithm="fricas")

[Out]

[1/192*(15*a^3*sqrt(b)*x^10*log((a*x^4 - 2*sqrt(b)*x^2*sqrt((a*x^4 + b)/x^4) + 2*b)/x^4) - 2*(33*a^2*b*x^8 + 2
6*a*b^2*x^4 + 8*b^3)*sqrt((a*x^4 + b)/x^4))/(b*x^10), 1/96*(15*a^3*sqrt(-b)*x^10*arctan(sqrt(-b)*x^2*sqrt((a*x
^4 + b)/x^4)/b) - (33*a^2*b*x^8 + 26*a*b^2*x^4 + 8*b^3)*sqrt((a*x^4 + b)/x^4))/(b*x^10)]

________________________________________________________________________________________

giac [A]  time = 0.17, size = 87, normalized size = 0.95 \[ \frac {\frac {15 \, a^{4} \arctan \left (\frac {\sqrt {a x^{4} + b}}{\sqrt {-b}}\right )}{\sqrt {-b}} - \frac {33 \, {\left (a x^{4} + b\right )}^{\frac {5}{2}} a^{4} - 40 \, {\left (a x^{4} + b\right )}^{\frac {3}{2}} a^{4} b + 15 \, \sqrt {a x^{4} + b} a^{4} b^{2}}{a^{3} x^{12}}}{96 \, a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^4)^(5/2)/x^3,x, algorithm="giac")

[Out]

1/96*(15*a^4*arctan(sqrt(a*x^4 + b)/sqrt(-b))/sqrt(-b) - (33*(a*x^4 + b)^(5/2)*a^4 - 40*(a*x^4 + b)^(3/2)*a^4*
b + 15*sqrt(a*x^4 + b)*a^4*b^2)/(a^3*x^12))/a

________________________________________________________________________________________

maple [A]  time = 0.02, size = 113, normalized size = 1.23 \[ -\frac {\left (\frac {a \,x^{4}+b}{x^{4}}\right )^{\frac {5}{2}} \left (15 a^{3} x^{12} \ln \left (\frac {2 b +2 \sqrt {a \,x^{4}+b}\, \sqrt {b}}{x^{2}}\right )+33 \sqrt {a \,x^{4}+b}\, a^{2} \sqrt {b}\, x^{8}+26 \sqrt {a \,x^{4}+b}\, a \,b^{\frac {3}{2}} x^{4}+8 \sqrt {a \,x^{4}+b}\, b^{\frac {5}{2}}\right )}{96 \left (a \,x^{4}+b \right )^{\frac {5}{2}} \sqrt {b}\, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/x^4)^(5/2)/x^3,x)

[Out]

-1/96*((a*x^4+b)/x^4)^(5/2)/x^2*(15*a^3*ln(2*(b+(a*x^4+b)^(1/2)*b^(1/2))/x^2)*x^12+33*a^2*(a*x^4+b)^(1/2)*x^8*
b^(1/2)+26*a*b^(3/2)*(a*x^4+b)^(1/2)*x^4+8*b^(5/2)*(a*x^4+b)^(1/2))/(a*x^4+b)^(5/2)/b^(1/2)

________________________________________________________________________________________

maxima [B]  time = 1.99, size = 158, normalized size = 1.72 \[ \frac {5 \, a^{3} \log \left (\frac {\sqrt {a + \frac {b}{x^{4}}} x^{2} - \sqrt {b}}{\sqrt {a + \frac {b}{x^{4}}} x^{2} + \sqrt {b}}\right )}{64 \, \sqrt {b}} - \frac {33 \, {\left (a + \frac {b}{x^{4}}\right )}^{\frac {5}{2}} a^{3} x^{10} - 40 \, {\left (a + \frac {b}{x^{4}}\right )}^{\frac {3}{2}} a^{3} b x^{6} + 15 \, \sqrt {a + \frac {b}{x^{4}}} a^{3} b^{2} x^{2}}{96 \, {\left ({\left (a + \frac {b}{x^{4}}\right )}^{3} x^{12} - 3 \, {\left (a + \frac {b}{x^{4}}\right )}^{2} b x^{8} + 3 \, {\left (a + \frac {b}{x^{4}}\right )} b^{2} x^{4} - b^{3}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x^4)^(5/2)/x^3,x, algorithm="maxima")

[Out]

5/64*a^3*log((sqrt(a + b/x^4)*x^2 - sqrt(b))/(sqrt(a + b/x^4)*x^2 + sqrt(b)))/sqrt(b) - 1/96*(33*(a + b/x^4)^(
5/2)*a^3*x^10 - 40*(a + b/x^4)^(3/2)*a^3*b*x^6 + 15*sqrt(a + b/x^4)*a^3*b^2*x^2)/((a + b/x^4)^3*x^12 - 3*(a +
b/x^4)^2*b*x^8 + 3*(a + b/x^4)*b^2*x^4 - b^3)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {{\left (a+\frac {b}{x^4}\right )}^{5/2}}{x^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/x^4)^(5/2)/x^3,x)

[Out]

int((a + b/x^4)^(5/2)/x^3, x)

________________________________________________________________________________________

sympy [A]  time = 6.23, size = 102, normalized size = 1.11 \[ - \frac {11 a^{\frac {5}{2}} \sqrt {1 + \frac {b}{a x^{4}}}}{32 x^{2}} - \frac {13 a^{\frac {3}{2}} b \sqrt {1 + \frac {b}{a x^{4}}}}{48 x^{6}} - \frac {\sqrt {a} b^{2} \sqrt {1 + \frac {b}{a x^{4}}}}{12 x^{10}} - \frac {5 a^{3} \operatorname {asinh}{\left (\frac {\sqrt {b}}{\sqrt {a} x^{2}} \right )}}{32 \sqrt {b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/x**4)**(5/2)/x**3,x)

[Out]

-11*a**(5/2)*sqrt(1 + b/(a*x**4))/(32*x**2) - 13*a**(3/2)*b*sqrt(1 + b/(a*x**4))/(48*x**6) - sqrt(a)*b**2*sqrt
(1 + b/(a*x**4))/(12*x**10) - 5*a**3*asinh(sqrt(b)/(sqrt(a)*x**2))/(32*sqrt(b))

________________________________________________________________________________________